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Discount for students on registration and train tickets

https://swissroboticsday.ch/
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APPLIED MACHINE LEARNING 

Principal Component Analysis (PCA) 

Interactive exercise – lecture session
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Interactions during interactive lecture

Type it in zoom 

chat box

Ask live!

Teaching assistants 

will reply live

Type it in @ask-a-question text channel
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Access to discord

https://discord.gg/TwTfKkv
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Qualify the content of the videos 

of the theoretical material of the class

A. Videos?? I did not know there 

were videos!

B. Video material was easy to follow

C. Material is presented too rapidly  

D. I already knew most concepts

E. I would have liked more 

information on some topics

F. No opinion

7

Multiple answers possible
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Qualify the content of the PCA quiz

A. Easy

B. Medium

C. Difficult

D. Quiz, what / where?? 

8

Multiple answers possible
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PCA – Key Concepts

PCA has two properties:

1. It reduces the dimensionality of the data.

2. It extracts features in the data. 

9

PCA can be used as:

1. Compression method for ease of data storage and retrieval.

2. Pre-processing method before classification to a) reduce computational 

costs, b) extract features to ease classifier’s job.

To achieve 1 & 2, it uses existing correlation across datapoints.
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Reducing the dimensionality 

by looking for correlations

10



APPLIED MACHINE LEARNING MACHINE LEARNING I

Which of the projection vectors below 

minimizes reconstruction error?

A. a=[2 1]T

B. a=[1 2]T

C. a=[-0.5 -1]T

11
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PCA: Exercise 1 Reducing dimensionality of dataset
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The projection vector 
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Which of the projection vectors below 

minimizes reconstruction error?
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Are the two groups of points still separated 

once projected onto the first PCA projection 

(eigenvector with largest eigenvalue)?

A. YES

B. NO

C. DO NOT KNOW
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PCA: Exercise 2 Preprocessing for classification
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The first PCA projection allows to separate 

the two groups of datapoints with a cut-off midway. 
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PCA: Exercise 2 Preprocessing for classification
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Are the two groups of points still separated 

once projected onto the first PCA projection 

(eigenvector with largest eigenvalue)?

A. YES

B. NO

C. DO NOT KNOW
15

PCA: Exercise 3 Preprocessing for classification
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❑ The first projection does not separate the data but rather merge 

them – the two classes get superimposed.

❑ On the second projection, the groups are separated.
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PCA does not seek projections that make data more separable!

However, among the projections, some may make data more separable.
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PCA: Exercise 3 Pre-processing prior to classification
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APPLIED MACHINE LEARNING 

PCA as a method to find features in data

17
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How many eigenvectors 

do you obtain after PCA?

A. 2

B. 22

C. 23

D. 230400

18

23 images, each of which is of dimension 230400. 

PCA on images

 320 240 3 230400 x =
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M=23 images, each of which is of dimension N=230400.

       

                                                 

PCA on images

The covariance matrix is . 

If  is  , then  is .

230400. 

The eigendecomposition of 

generates 230400 eigenvecto s.r
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out of these  eigenvectors, as they may be

sufficient for your task (e.g. classificat
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What is the dimension 

of each eigenvector?

A. 2

B. 23

C. 230400

20

M=23 images, each of which is of dimension N=230400.

       

                                                 

PCA on images
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M=23 images, each of which is of dimension N=230400.

       

                                                 

PCA on images

Each eigenvector is of the same 

dimension as the original images, 

i.e. N=230400.

What is the dimension 

of each eigenvector?

An eigenvector of a dataset of 

images is an image. Such an 

eigenvector is often referred to as 

eigenface.



APPLIED MACHINE LEARNING

22

Can you explain the “color” of the eigenvectors?

1 2 3                              e e e

1             e

Interpreting PCA projections and eigenvectors

2             e
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The red and yellow images have coordinate ~0 on the 1st eigenvector.

1             e

2             e

Interpreting PCA projections and eigenvectors

1 2 3                              e e e
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1             e

What do the entries of the 

eigenvectors look like?

Interpreting PCA projections and eigenvectors
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RGB

1             e

Interpreting PCA projections and eigenvectors

3 320 240 230400

Each image is a high-dimensional vector
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PCA applied to a set of 100 faces, coded in a high 

dimensional pixel space (54 150 dimensions), 

First 4 projections (4 principal components with largest eigenvalues)

Hancock, P et al (1996). Face processing: human perception and principal components 

analysis. Memory and Cognition 24 1, pp. 26–40 26

Eigenfaces
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Interpreting PCA projections and eigenvectors
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What would the entries of the first eigenvector look like?

Each pixel is coded with a scalar 

Grey scale [0 ,1] 

0 = Black

1 = White
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Interpreting PCA projections and eigenvectors

What would the entries of the first eigenvector look like?
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Entries not exactly zero
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Groups glasses

1 2 3                          e e e

3Projection along e
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How to choose the optimal p eigenvectors?

1

1

Information loss is measured

as fraction of variance of data

retained in the projections.

Variance is measured by the

eigenvalues.

0.1
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Choose the smallest number of eigenvectors p but with smallest 

information loss. In the literature, you will often see that people select a 

subset of eigenvectors so as to incur no more than 10% information loss.
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How to choose the optimal p eigenvectors?

≤

But first two eigenvectors are sufficient for separating the two faces

and the third eigenvector is sufficient to extract the glasses’ class.

10% loss

1             e

2             e

3Projection along e
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Take-Home Message

If your goal is to reduce dimensionality of the data with least deformation 

and information loss, pick the eigenvectors in decreasing order of their 

eigenvalues, until you reach the % of the variance you wish to retain.

10% loss
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Take-Home Message

If your goal is to extract some specific 

information, pick the eigenvector that 

conveys this information. 

They are not necessarily the first 

eigenvectors. Relevant information may 

be entailed in other eigenvectors, 

sometimes in eigenvectors with low 

eigenvalues.

Glasses

Beware though that if you pick an 

eigenvector with very low eigenvalue, its 

statistical power will be low too and you 

may be picking on noise.
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2nd Example – Fruit Dataset

Classes: Apple with a leaf vs. Apple without a leaf

Difficult to 

separate the 

two classes

1 2Projection along  and  e e

Eigenvectors 1 & 2 

code for color
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2nd Example – Fruit Dataset

Difficult to 

separate the 

two classes

4Projection along e

Eigenvector 4 entails information 

about the leafs, but it has very low

statistical significance due to the 

fact that the leaf is encapsulated in 

few pixels.
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Qualify the content of the interactive class

A. Too easy

B. Right level

C. Too fast / too difficult

36

Multiple answers possible
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For those of you following class on-line:

Did you find it easy to interact with TA on and zoom 

during the interactive exercise sessions? 

A. Yes

B. No

C. No opinion

37
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On-line 

38

NEXT WEEK! 

Class starts at 9h15am → 13h00

Computer-based practice 

session on PCA

On site 

In classrooms 

BC 07 – 08, CM 1103
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Exercise session

Raise hand and wait

for a TA available

Zoom will be used 

only for live 

presentations 

of solutions

Students can work 

individually or in group 

→ create their own room

Ask for TA who will 

join your room

(3 min. max)

Launch DISCORD: https://discord.gg/TwTfKkv  but stay on zoom too!

Download the exercises from moodle

https://discord.gg/TwTfKkv
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